Abstract
A panel/vortex particle hybrid method is coupled with a computational structure dynamics code to predict helicopter rotor loads. The rotor blade surfaces and near wakes are modeled by the panel method, while the far wake is modeled by resorting to the vortex particles method. A fast summation method is introduced to accelerate the evolution of particle–particle-induced velocity and its derivative as well as panel–particle interactions. The developed vortex particle method code is coupled with the multibody code MBDyn to predict the rotor airloads. Numerical validations are carried, out and the results are compared with the experiments and simulation results in the literature.
Funder
China Scholarship Council
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献