Review of vortex methods for rotor aerodynamics and wake dynamics

Author:

Lee H.,Sengupta B.,Araghizadeh M. S.,Myong R. S.

Abstract

AbstractElectric vertical take-off and landing (eVTOL) aircraft with multiple lifting rotors or prop-rotors have received significant attention in recent years due to their great potential for next-generation urban air mobility (UAM). Numerical models have been developed and validated as predictive tools to analyze rotor aerodynamics and wake dynamics. Among various numerical approaches, the vortex method is one of the most suitable because it can provide accurate solutions with an affordable computational cost and can represent vorticity fields downstream without numerical dissipation error. This paper presents a brief review of the progress of vortex methods, along with their principles, advantages, and shortcomings. Applications of the vortex methods for modeling the rotor aerodynamics and wake dynamics are also described. However, the vortex methods suffer from the problem that it cannot deal with the nonlinear aerodynamic characteristics associated with the viscous effects and the flow behaviors in the post-stall regime. To overcome the intrinsic drawbacks of the vortex methods, recent progress in a numerical method proposed by the authors is introduced, and model validation against experimental data is discussed in detail. The validation works show that nonlinear vortex lattice method (NVLM) coupled with vortex particle method (VPM) can predict the unsteady aerodynamic forces and complex evolution of the rotor wake.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Aerospace Engineering,Modeling and Simulation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Reference167 articles.

1. Castles W Jr, Gray RB (1951) Empirical relation between induced velocity, thrust, and rate of descent of a helicopter rotor as determined by wind-tunnel tests on four model rotors. NACA Technical Note NACA-TN-2474

2. Wilson JC, Mineck RE (1974) Wind tunnel investigation of helicopter rotor wake effects on three helicopter fuselage models. NASA Technical Memorandum NASA-TM-X-3185-SUPPL

3. Landgrebe AJ (1971) An analytical and experimental investigation of helicopter rotor hover performance and wake geometry characteristics. AD0728835

4. McCroskey WJ, Fisher RK (1972) Detailed aerodynamic measurements on a model rotor in the blade stall regime. J Am Helicopter Soc 17(1):20–30. https://doi.org/10.4050/JAHS.17.1.20

5. Johnson B, Leishman JG, Sydney A (2010) Investigation of sediment entrainment using dual-phase, high-speed particle image velocimetry. J Am Helicopter Soc 55(4):42003. https://doi.org/10.4050/JAHS.55.042003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3