Artificial Macropores with Sandy Fillings Enhance Desalinization and Increase Plant Biomass in Two Contrasting Salt-Affected Soils

Author:

Zhang YifuORCID,Zhang Ruihong,Zhang Baofeng,Xi XiaoboORCID

Abstract

Salt accumulation in topsoil is a widespread restricting factor that limits agricultural production and threatens food security in arid and semi-arid regions. However, whether this upward enrichment was suppressed by macropores was less documented. Therefore, artificial macropores with sandy fillings (AMSF) method was proposed in this study. Soil column experiments showed a significant improvement of saturated hydraulic conductivity (Ks) by more than 260% under artificial macropore treatment. Freshwater irrigation was conducted to monitor the short-term water and salt movement. This research aimed at evaluating the potential benefit of AMSF method on soil desalinization in coastal farmland of northern China. The results demonstrated that downward movement of soil water was stimulated in AMSF method, accordingly, washing more salt ions out of top rooting zone. Particularly, 10 cm or more macropore depth treatments of AMSF method enhanced total desalinization by 52.1% to 176.6% in 0–30 cm soil layer, in comparison to the control group without macropore. Subsequent observations for alfalfa showed higher biomass by 20.8% under 15 cm macropore depth. The results here provided an exploration demonstration to pursue these studies with the ultimate goal of optimizing application strategies for amendment in coastal salt-affected lands of northern China.

Funder

Interdisciplinary Project of Yangzhou University Crop Science Special Zone

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3