Abstract
This study focuses on calibration and test campaigns of an IoT camera-based sensor system to monitor occupancy, as part of an ongoing research project aiming at defining a Building Management System (BMS) for facility management based on an occupancy-oriented Digital Twin (DT). The research project aims to facilitate the optimization of building operational stage through advanced monitoring techniques and data analytics. The quality of collected data, which are the input for analyses and simulations on the DT virtual entity, is critical to ensure the quality of the results. Therefore, calibration and test campaigns are essential to ensure data quality and efficiency of the IoT sensor system. The paper describes the general methodology for the BMS definition, and method and results of first stages of the research. The preliminary analyses included Indicative Post-Occupancy Evaluations (POEs) supported by Building Information Modelling (BIM) to optimize sensor system planning. Test campaign are then performed to evaluate collected data quality and system efficiency. The method was applied on a Department of Politecnico di Milano. The period of the year in which tests are performed was critical for lighting conditions. In addition, spaces’ geometric features and user behavior caused major issues and faults in the system.Incorrect boundary definition: areas that are not covered by boundaries; thus, they are not monitored
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献