Bearing Fault Diagnosis Approach under Data Quality Issues

Author:

AlShalalfeh Ashraf,Shalalfeh LaithORCID

Abstract

In rotary machinery, bearings are susceptible to different types of mechanical faults, including ball, inner race, and outer race faults. In condition-based monitoring (CBM), several techniques have been proposed in fault diagnostics based on the vibration measurements. For this paper, we studied the fractal characteristics of non-stationary vibration signals collected from bearings under different health conditions. Using the detrended fluctuation analysis (DFA), we proposed a novel method to diagnose the bearing faults based on the scaling exponent (α1) of vibration signal at the short-time scale. In vibration data with high sampling rate, our results showed that the proposed measure, scaling exponent, provides an accurate identification of the health state of the bearing. At the end, we evaluated the performance of the proposed method under different data quality issues, data loss and induced noise.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3