A bearing fault diagnosis approach based on an improved neural network combined with transfer learning

Author:

Li RuoyuORCID,Pan YanqiuORCID,Fan Qi,Wang WeiORCID,Ren Ruling

Abstract

Abstract In modern industrial systems, bearing failures account for 30%–40% of industrial machinery faults. Traditional convolutional neural network suffers from gradient vanishing and overfitting, resulting in a poor diagnostic accuracy. To address the issues, a new bearing fault diagnosis approach was proposed based on an improved AlexNet neural network combined with transfer learning. After decomposition and noise-reduction, reconstructed vibration signals were transformed into 2D images, then input into the improved AlexNet for training and follow-up transfer learning. Program auto-tuning and image-enhancing techniques were employed to increase the diagnostic accuracy in this study. The approach was verified with the datasets from Case Western Reserve University (CWRU), Jiangnan University (JNU), and the Association for Mechanical Failure Prevention Technology (MFPT). The results showed that the diagnostic accuracies by normal learning were more than 97% for CWRU and JNU datasets, and 100% for MFPT dataset. After transfer learning, the accuracies all reached above 99.5%. The proposed approach was demonstrated to be able to effectively diagnose the bearing faults.

Funder

Fanqun Grant of Natural Science and Engineering Innovation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3