Influence of Severe Plastic Deformation on Static Recrystallization Microstructure of Pure Iron

Author:

Nagashima Fumihisa,Nakagawa Yuki,Yoshino Masahiko

Abstract

In recent years, ultrafine-grained steel has been gaining increasing attention as a high-performance material. Accordingly, it is necessary to develop an efficient production method for ultrafine-grained steel. Severe plastic deformation is a critical factor that causes grain subdivision into ultrafine grains less than 1 µm in diameter. In this study, the effects of plastic deformation on the microstructure and static recrystallization of pure iron were studied by comparing orthogonal cutting and rolling. Orthogonal cutting yielded ultrafine grains with a diameter of 0.2 µm. It was found that a high strain rate in the thin shear plane generated during the cutting process caused a uniform subdivision of grains, and this uniform plastic deformation resulted in the uniform recrystallization of grains. In addition, a theoretical model was developed, and it was revealed that the number of recrystallized grains depended on the fraction of a large-misorientation area constructed with geometrically necessary boundaries (GNBs). It was suggested that the cutting process was more advantageous than rolling in producing ultrafine recrystallized grains because cutting could apply severe plastic strain uniformly on a work material, effectively generating GNBs.

Funder

Amada Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3