Numerical analysis of subgrain formation during metal cutting and rolling based on the crystal plasticity theory

Author:

Nagashima Fumihisa,Nakagawa Yuki,Yoshino MasahikoORCID

Abstract

AbstractThe grain refinement technology is important in improving the metallic material properties without the requirement of additional alloy elements. Previously, we developed an efficient method for producing ultrafine-grained steel strips using a combination of cutting and heat treatment. However, the effect of cutting on recrystallization was not apparent. The objective of this study is to investigate the effects of metal cutting on static recrystallization and outline its advantages in grain refinement using numerical simulations based on the crystal plasticity theory. Simulation results show that shear deformation in metal cutting activates more slip systems than plane strain compression via rolling, even when considering the same equivalent plastic strain. The geometrically necessary dislocations are assumed to accumulate in the crystal because many slip systems are activated in shear deformation and improve grain refinement via static recrystallization in the subsequent heat treatment. This result indicates that the deformation type plays an important role in the recrystallization process. Thus, cutting is more efficient than rolling for the production of ultrafine-grained steel.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3