Wide and Deep Fourier Neural Network for Hyperspectral Remote Sensing Image Classification

Author:

Xi JiangboORCID,Ersoy Okan K.ORCID,Cong MingORCID,Zhao ChaoyingORCID,Qu WeiORCID,Wu TianjunORCID

Abstract

Hyperspectral remote sensing image (HSI) classification is very useful in different applications, and recently, deep learning has been applied for HSI classification successfully. However, the number of training samples is usually limited, causing difficulty in use of very deep learning models. We propose a wide and deep Fourier network to learn features efficiently by using pruned features extracted in the frequency domain. It is composed of multiple wide Fourier layers to extract hierarchical features layer-by-layer efficiently. Each wide Fourier layer includes a large number of Fourier transforms to extract features in the frequency domain from a local spatial area using sliding windows with given strides.These extracted features are pruned to retain important features and reduce computations. The weights in the final fully connected layers are computed using least squares. The transform amplitudes are used for nonlinear processing with pruned features. The proposed method was evaluated with HSI datasets including Pavia University, KSC, and Salinas datasets. The overall accuracies (OAs) of the proposed method can reach 99.77%, 99.97%, and 99.95%, respectively. The average accuracies (AAs) can achieve 99.55%, 99.95%, and 99.95%, respectively. The Kappa coefficients are as high as 99.69%, 99.96%, and 99.94%, respectively. The experimental results show that the proposed method achieved excellent performance among other compared methods. The proposed method can be used for applications including classification, and image segmentation tasks, and has the ability to be implemented with lightweight embedded computing platforms. The future work is to improve the method to make it available for use in applications including object detection, time serial data prediction, and fast implementation.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, CHD

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3