Author:
Ramesh R.,Sathiamoorthy S.
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Vij, R. and Arora, S., 2022. A Systematic Review on Diabetic Retinopathy Detection Using Deep Learning Techniques. Archives of Computational Methods in Engineering, pp.1–46.
2. Nadeem MW, Goh HG, Hussain M, Liew SY, Andonovic I, Khan MA (2022) Deep learning for diabetic retinopathy analysis: a review, research challenges, and future directions. Sensors 22(18):6780
3. Li F, Wang Y, Xu T, Dong L, Yan L, Jiang M, Zhang X, Jiang H, Wu Z, Zou H (2022) Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs. Eye 36(7):1433–1441
4. Li, Y.H., Yeh, N.N., Chen, S.J. and Chung, Y.C., 2019. Computer-assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network. Mobile Information Systems, 2019.
5. Vijayan, T., Sangeetha, M., Kumaravel, A. and Karthik, B., 2020. Feature Selection for Simple Color Histogram Filter based on Retinal Fundus Images for Diabetic Retinopathy Recognition. I.E.T.E. Journal of Research, pp.1–8.