Estimating the Carbon Emissions of Remotely Sensed Energy-Intensive Industries Using VIIRS Thermal Anomaly-Derived Industrial Heat Sources and Auxiliary Data

Author:

Kong Xiaoyang,Wang Xianfeng,Jia Man,Li Qi

Abstract

The energy-intensive industrial sector (EIIS) occupies a majority of global CO2 emissions, but spatially monitoring the spatiotemporal dynamics of these emissions remains challenging. In this study, we used the Chinese province with the largest carbon emissions, Shandong Province, as an example to investigate the capacity of remotely sensed thermal anomaly products to identify annual industrial heat source (IHS) patterns at a 1 km resolution and estimated the carbon emissions of these sources using auxiliary datasets and the boosting regression tree (BRT) model. The IHS identification accuracy was evaluated based on two IHS references and further attributed according to corporate inventory data. We followed a bottom-up approach to estimate carbon emissions for each IHS object and conducted model fitting using the explanatory strength of the annual population density, nighttime light (NTL), and relevant thermal characteristic information derived from the Visible Infrared Imaging Radiometer Suite (VIIRS). We generated a time series of IHS distributions from 2012 to 2020 containing a total of over 3700 IHS pixels exhibiting better alignment with the reference data than that obtained in previous work. The results indicated that the identified IHSs mostly belonged to the EIIS, such as energy-related industries (e.g., thermal power plants) and heavy manufacturing industries (e.g., chemistry and cement plants), that primarily use coal and coke as fuel sources. The BRT model exhibited a good performance, explaining 61.9% of the variance in the inventory-based carbon emissions and possessing an index of agreement (IOA) of 0.83, suggesting a feasible goodness of fit of the model when simulating carbon emissions. Explanatory variables such as the population density, thermal power radiation, NTL, and remotely sensed thermal anomaly durations were found to be important factors for improving carbon emissions modeling. The method proposed in this study is useful to aid management agencies and policymakers in tracking the carbon footprint of the EIIS and regulating high-emission corporations to achieve carbon neutrality.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3