An industrial heat source dataset based on remotely sensed active fire/hotspot detection in China from 2012 to 2021

Author:

Ma Caihong1,Sui Xin12ORCID,Guan Linlin1,Xie Yanmei13,Li Tianzhu14,Zhang Pengyu12,Qiu Yubao1,Huang Weimin5

Affiliation:

1. Aerospace Information Research Institute Chinese Academy of Sciences Beijing China

2. College of Information Beijing Forestry University Beijing China

3. College of Environment and Spatial Informatics China University of Mining and Technology Xuzhou China

4. University of Science and Technology of China Beijing China

5. Fujian Space Carbon Technology Co., Ltd. Nanping China

Abstract

AbstractThe distribution of industrial heat sources (IHSs) is a crucial indicator for evaluating energy consumption and air pollution levels. However, there is a notable lack of IHS datasets in China that are frequently updated, span long periods, contain detailed characteristic information, have been individually validated and are publicly available. In this study, IHS datasets from China between 2012 and 2021 were constructed using the Visible Infrared Imaging Radiometer Suite (VIIRS) I Band 375 m NRT Active Fire/Hotspots (ACF) Product (VNP14IMGTDL_NRT) to monitor and analyse large‐scale IHSs. First, a density segmentation method based on an improved K‐means algorithm using ACF data and spatial topological correlation analysis was conducted to construct the IHS. Then, 4410 records covering China between 2012 and 2021, with 21 attributes, were obtained and verified, with an individual identification precision of 95.08% via manual verification based on high‐resolution remote‐sensing images and point of interest (POI) data. Finally, the trend of the spatiotemporal variation in IHSs was analysed using a long time series. The results showed that the spatial distribution of IHSs in China from 2012 to 2021 exhibited local aggregation and a gradual shift from east to west. In addition, the number of IHSs in China showed an initial increasing trend from 2012 to 2014, followed by a decrease since 2014, consistent with national energy reform‐related policies. The results of this study indicate the temporal variation in IHSs, enhance the precision of identifying fire location categories and demonstrate the potential for improving energy efficiency, reducing emissions and ensuring sustainable development in China.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3