Abstract
With the introduction of Internet of Things (IoT) technology in several sectors, wireless, reliable, and energy-saving communication in distributed sensor networks are more important than ever. Thereby, wake-up technologies are becoming increasingly important as they significantly contribute to reducing the energy consumption of wireless sensor nodes. In an indoor environment, the use of wireless sensors, in general, is more challenging due to signal fading and reflections and needs, therefore, to be critically investigated. This paper discusses the performance analysis of wake-up receiver (WuRx) architectures based on two low frequency (LF) amplifier approaches with regard to sensitivity, power consumption, and package error rate (PER). Factors that affect systems were compared and analyzed by analytical modeling, simulation results, and experimental studies with both architectures. The developed WuRx operates in the 868 MHz band using on-off-keying (OOK) signals while supporting address detection to wake up only the targeted network node. By using an indoor setup, the signal strength and PER of received signal strength indicator (RSSI) in different rooms and distances were determined to build a wireless sensor network. The results show a wake-up packets (WuPts) detection probability of about 90% for an interior distance of up to 34 m.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献