Modeling of Packet Error Rate Distribution Based on Received Signal Strength Indications in OMNeT++ for Wake-Up Receivers

Author:

Baazaoui Mohamed Khalil12ORCID,Ketata Ilef12ORCID,Fakhfakh Ahmed2,Derbel Faouzi1

Affiliation:

1. Department of Electrical Engineering and Information Technology, University of Applied Sciences, 04107 Leipzig, Germany

2. Laboratory of Science and Technologies of Information and Communication, National School of Electronic and Telecommunication of Sfax, Sfax 3000, Tunisia

Abstract

Wireless sensor network (WSN) with energy-saving capabilities have drawn considerable attention in recent years, as they are the key for long-term monitoring and embedded applications. To improve the power efficiency of wireless sensor nodes, a wake-up technology was introduced in the research community. Such a device reduces the system’s energy consumption without affecting the latency. Thereby, the introduction of wake-up receiver (WuRx)-based technology has grown in several sectors. The use of WuRx in a real environment without consideration of physical environmental conditions, such as the reflection, refraction, and diffraction caused by different materials, that affect the reliability of the whole network. Indeed, the simulation of different protocols and scenarios under such circumstances is a success key for a reliable WSN. Simulating different scenarios is required to evaluate the proposed architecture before its deployment in a real-world environment. The contribution of this study emerges in the modeling of different link quality metrics, both hardware and software metrics that will be integrated into an objective modular network testbed in C++ (OMNeT++) discrete event simulator afterward are discussed, with the received signal strength indicator (RSSI) for the hardware metric case and the packet error rate (PER) for the software metric study case using WuRx based on a wake-up matcher and SPIRIT1 transceiver. The different behaviors of the two chips are modeled using machine learning (ML) regression to define parameters such as sensitivity and transition interval for the PER for both radio modules. The generated module was able to detect the variation in the PER distribution as a response in the real experiment output by implementing different analytical functions in the simulator.

Funder

German Academic Exchange Service

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3