A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms

Author:

Hou Tingting,Fang Rengcun,Tang JinruiORCID,Ge Ganheng,Yang Dongjun,Liu Jianchao,Zhang Wei

Abstract

Short-term residential load forecasting is the precondition of the day-ahead and intra-day scheduling strategy of the household microgrid. Existing short-term electric load forecasting methods are mainly used to obtain regional power load for system-level power dispatch. Due to the high volatility, strong randomness, and weak regularity of the residential load of a single household, the mean absolute percentage error (MAPE) of the traditional methods forecasting results would be too big to be used for home energy management. With the increase in the total number of households, the aggregated load becomes more and more stable, and the cyclical pattern of the aggregated load becomes more and more distinct. In the meantime, the maximum daily load does not increase linearly with the increase in households in a small area. Therefore, in our proposed short-term residential load forecasting method, an optimal number of households would be selected adaptively, and the total aggregated residential load of the selected households is used for load prediction. In addition, ordering points to identify the clustering structure (OPTICS) algorithm are also selected to cluster households with similar power consumption patterns adaptively. It can be used to enhance the periodic regularity of the aggregated load in alternative. The aggregated residential load and encoded external factors are then used to predict the load in the next half an hour. The long short-term memory (LSTM) deep learning algorithm is used in the prediction because of its inherited ability to maintain historical data regularity in the forecasting process. The experimental data have verified the effectiveness and accuracy of our proposed method.

Funder

State Grid Hubei Electric Power Company Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3