Application of LiDAR Derived Fuel Cells to Wildfire Modeling at Laboratory Scale

Author:

Marcozzi Anthony A.1ORCID,Johnson Jesse V.1,Parsons Russell A.2ORCID,Flanary Sarah J.2,Seielstad Carl A.3ORCID,Downs Jacob Z.1

Affiliation:

1. Department of Computer Science, University of Montana, 32 Campus Drive, ISB 406, Missoula, MT 59812, USA

2. US Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, 5775 W. Highway 10, Missoula, MT 59801, USA

3. National Center for Landscape Fire Analysis, University of Montana, 32 Campus Drive, CHCB 428, Missoula, MT 59812, USA

Abstract

Terrestrial LiDAR scans (TLS) offer a rich data source for high-fidelity vegetation characterization, addressing the limitations of traditional fuel sampling methods by capturing spatially explicit distributions that have a significant impact on fire behavior. However, large volumes of complex, high resolution data are difficult to use directly in wildland fire models. In this study, we introduce a novel method that employs a voxelization technique to convert high-resolution TLS data into fine-grained reference voxels, which are subsequently aggregated into lower-fidelity fuel cells for integration into physics-based fire models. This methodology aims to transform the complexity of TLS data into a format amenable for integration into wildland fire models, while retaining essential information about the spatial distribution of vegetation. We evaluate our approach by comparing a range of aggregate geometries in simulated burns to laboratory measurements. The results show insensitivity to fuel cell geometry at fine resolutions (2–8 cm), but we observe deviations in model behavior at the coarsest resolutions considered (16 cm). Our findings highlight the importance of capturing the fine scale spatial continuity present in heterogeneous tree canopies in order to accurately simulate fire behavior in coupled fire-atmosphere models. To the best of our knowledge, this is the first study to examine the use of TLS data to inform fuel inputs to a physics based model at a laboratory scale.

Funder

Strategic Environmental Research and Development Program

National Science Foundation EPSCoR

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3