An Intelligent Machinery Fault Diagnosis Method Based on GAN and Transfer Learning under Variable Working Conditions

Author:

He WangpengORCID,Chen Jing,Zhou Yue,Liu Xuan,Chen BinqiangORCID,Guo Baolong

Abstract

Intelligent fault diagnosis is of great significance to guarantee the safe operation of mechanical equipment. However, the widely used diagnosis models rely on sufficient independent and homogeneously distributed monitoring data to train the model. In practice, the available data of mechanical equipment faults are insufficient and the data distribution varies greatly under different working conditions, which leads to the low accuracy of the trained diagnostic model and restricts it, making it difficult to apply to other working conditions. To address these problems, a novel fault diagnosis method combining a generative adversarial network and transfer learning is proposed in this paper. Dummy samples with similar fault characteristics to the actual engineering monitoring data are generated by the generative adversarial network to expand the dataset. The transfer fault characteristics of monitoring data under different working conditions are extracted by a deep residual network. Domain-adapted regular term constraints are formulated to the training process of the deep residual network to form a deep transfer fault diagnosis model. The bearing fault data are used as the original dataset to validate the effectiveness of the proposed method. The experimental results show that the proposed method can reduce the influence of insufficient original monitoring data and enable the migration of fault diagnosis knowledge under different working conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3