Author:
Fliszár-Nyúl ,Lemli ,Kunsági-Máté ,Szente ,Poór
Abstract
Alternariol is an Alternaria mycotoxin that appears in fruits, tomatoes, oilseeds, and corresponding products. Chronic exposure to it can induce carcinogenic and xenoestrogenic effects. Cyclodextrins (CDs) are ring-shaped molecules built up by glucose units, which form host–guest type complexes with some mycotoxins. Furthermore, insoluble CD polymers seem suitable for the extraction/removal of mycotoxins from aqueous solutions. In this study, the interactions of alternariol with β- and γ-CDs were tested by employing fluorescence spectroscopic and modeling studies. Moreover, the removal of alternariol from aqueous solutions by insoluble β-CD bead polymer (BBP) was examined. Our major observations/conclusions are the following: (1) CDs strongly increased the fluorescence of alternariol, the strongest enhancement was induced by the native γ-CD at pH 7.4. (2) Alternariol formed the most stable complexes with the native γ-CD (logK = 3.2) and the quaternary ammonium derivatives (logK = 3.4–3.6) at acidic/physiological pH and at pH 10.0, respectively. (3) BBP effectively removed alternariol from aqueous solution. (4) The alternariol-binding ability of β-CD polymers was significantly higher than was expected based on their β-CD content. (5) CD technology seems a promising tool to improve the fluorescence detection of alternariol and/or to develop new mycotoxin binders to decrease alternariol exposure.
Subject
Molecular Biology,Biochemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献