Application of Fluorescence Spectroscopy for Early Detection of Fungal Infection of Winter Wheat Grains

Author:

Matveeva Tatiana A.1,Sarimov Ruslan M.1ORCID,Persidskaya Olga K.1,Andreevskaya Veronika M.2ORCID,Semenova Natalia A.1ORCID,Gudkov Sergey V.1ORCID

Affiliation:

1. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia

2. All-Russian Phytopathology Research Institute, Big Vyazyomy 143050, Russia

Abstract

Plant pathogens are an important agricultural problem, and early and rapid pathogen identification is critical for crop preservation. This work focuses on using fluorescence spectroscopy to characterize and compare healthy and fungal pathogen-infected wheat grains. The excitation–emission matrices of whole wheat grains were measured using a fluorescence spectrometer. The samples included healthy control samples and grains manually infected with Fusarium graminearum and Alternaria alternata fungi. The five distinct zones were identified by analyzing the location of the fluorescence peaks at each measurement. The zone centered at λem = 328/λex= 278 nm showed an increase in intensity for grains infected with both pathogens during all periods of the experiment. Another zone with the center λem = 480/λex = 400 nm is most interesting from the point of view of early diagnosis of pathogen development. A statistically significant increase of fluorescence for samples with F. graminearum is observed on day 1 after infection; for A. alternata, on day 2, and the fluorescence of both decreases to the control level on day 7. Moreover, shifts in the emission peaks from 444 nm to 452 nm were recorded as early as 2–3 h after infection. These results highlight fluorescence spectroscopy as a promising technique for the early diagnosis of fungal diseases in cereal crops.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3