Assessment of Fibrinogen Thermal Conductivity and Interaction Energy with Polyarylethersulfone (PAES) Clinical Hemodialysis Membranes at Normal and Elevated Patient Body Temperatures

Author:

Mollahosseini Arash1,Abdelrasoul Amira12ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada

2. Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada

Abstract

Fibrinogen (FB) can trigger several biological reactions and is one of the critical proteins targeted during hemodialysis (HD). A better understanding of the thermal behavior of FB and its interactions with polymeric membranes during the HD process is needed in both normal and fever temperature conditions. This study calculated the thermal behavior of FB along with its interaction energy with polyarylethersulfone (PAES) clinical HD membranes using molecular dynamics (MD) approaches. The Dreiding force field was used for the MD simulations. The influence of temperature on the thermal conductivity (TC) and the interaction energy of the FB structure was assessed to understand the activation trends in fever conditions. Based on the MD simulation, the TC of FB at normal body temperature was 0.044 and 0.084 W/m·K according to equilibrium and non-equilibrium approaches, respectively. The elevation of temperature from normal to fever conditions increased the thermal conduction of FB to 0.577 and 0.114 W/m·K for equilibrium and non-equilibrium approaches, respectively. In addition, the elevation of patient blood temperature resulted in nearly 32 kcal/mol higher total interaction energy between FB and the PAES model. When end-stage renal disease (ESRD) patients have a HD session and experience fever and elevated temperature as a side effect, the interaction between FB and the membrane increases. More importantly, FB is exposed to more heat passage and accordingly more temperature-induced confirmation and activation compared to other human serum proteins such as albumin.

Funder

Natural Sciences and Engineering Research Council (NSERC)—Discovery Grant

Chemical and Biological Engineering Department

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3