Model Selection Using K-Means Clustering Algorithm for the Symmetrical Segmentation of Remote Sensing Datasets

Author:

Ali Ishfaq,Rehman Atiq Ur,Khan Dost MuhammadORCID,Khan Zardad,Shafiq MuhammadORCID,Choi Jin-GhooORCID

Abstract

The importance of unsupervised clustering methods is well established in the statistics and machine learning literature. Many sophisticated unsupervised classification techniques have been made available to deal with a growing number of datasets. Due to its simplicity and efficiency in clustering a large dataset, the k-means clustering algorithm is still popular and widely used in the machine learning community. However, as with other clustering methods, it requires one to choose the balanced number of clusters in advance. This paper’s primary emphasis is to develop a novel method for finding the optimum number of clusters, k, using a data-driven approach. Taking into account the cluster symmetry property, the k-means algorithm is applied multiple times to a range of k values within which the balanced optimum k value is expected. This is based on the uniqueness and symmetrical nature among the centroid values for the clusters produced, and we chose the final k value as the one for which symmetry is observed. We evaluated the proposed algorithm’s performance on different simulated datasets with controlled parameters and also on real datasets taken from the UCI machine learning repository. We also evaluated the performance of the proposed method with the aim of remote sensing, such as in deforestation and urbanization, using satellite images of the Islamabad region in Pakistan, taken from the Sentinel-2B satellite of the United States Geological Survey. From the experimental results and real data analysis, it is concluded that the proposed algorithm has better accuracy and minimum root mean square error than the existing methods.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference44 articles.

1. Big data ordination towards intensive care event count cases using fast computing GLLVMS;Caraka;BMC Med. Res. Methodol.,2022

2. Big data: Challenges, opportunities, and realities;Bhadani,2016

3. A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis

4. Seven Techniques for Dimensionality Reduction;Silipo,2014

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3