Road Extraction Method of Remote Sensing Image Based on Deformable Attention Transformer

Author:

Zhao Ling1ORCID,Zhang Jianing1ORCID,Meng Xiujun23,Zhou Wenming4,Zhang Zhenshi5,Peng Chengli1

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. Tianjin Zhongwei Aerospace Data System Technology Company Limited, Tianjin 300301, China

3. Tianjin Enterprise Key Laboratory of Intelligent Remote Sensing and Information Processing Technology, Tianjin 301899, China

4. China Railway Design Corporation, Tianjin 300308, China

5. Undergraduate School, National University of Defense Technology, Changsha 410080, China

Abstract

Road extraction is a typical task in the semantic segmentation of remote sensing images, and one of the most efficient techniques for solving this task in recent years is the vision transformer technique. However, roads typically exhibit features such as uneven scales and low signal-to-noise ratios, which can be understood as the asymmetry between the road and the background category and the asymmetry in the transverse and longitudinal shape of the road. Existing vision transformer models, due to their fixed sliding window mechanism, cannot adapt to the uneven scale issue of roads. Additionally, self-attention, based on fully connected mechanisms for long sequences, may suffer from attention deviation due to excessive noise, making it unsuitable for low signal-to-noise ratio scenarios in road segmentation, resulting in incomplete and fragmented road segmentation results. In this paper, we propose a road extraction based on deformable self-attention computation, termed DOCswin-Trans (Deformable and Overlapped Cross-Window Transformer), to solve these problems. On the one hand, we develop a DOC-Transformer block to address the scale imbalance issue, which can utilize the overlapped window strategy to preserve the overall contextual semantic information of roads as much as possible. On the other hand, we propose a deformable window strategy to adaptively resample input vectors, which can direct attention automatically to the foreground areas relevant to roads and thereby address the low signal-to-noise ratio problem. We evaluate the proposed method on two popular road extraction datasets (i.e., DeepGlobe and Massachusetts datasets). The experimental results demonstrate that the proposed method outperforms baseline methods. On the DeepGlobe dataset, the proposed method achieves an IoU improvement ranging from 0.63% to 5.01% compared to baseline methods. On the Massachusetts dataset, our method achieves an IoU improvement ranging from 0.50% to 6.24% compared to baseline methods.

Funder

National Natural Science Foundation of China

Tianjin Key Laboratory of Rail Transit Navigation Positioning and Spatio-temporal Big Data Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3