Affiliation:
1. Department of Building, Civil and Environmental Engineering, Concordia University, Montréal, QC H3G 1M8, Canada
2. Titan Environmental Containment Ltd., Ile des Chênes, MB R0A 0T1, Canada
Abstract
Climate change and human actions will exacerbate eutrophication cases in inland waters. By external or internal inputs, there will be an increase in nutrient concentrations in those systems worldwide. Those nutrients will bring faster trophic changes to inland waters and possible health and recreational advisories. A novel approach using a floating filtration system, a silt curtain, and geotextiles (woven and non-woven) is under investigation. This method has been applied as an in-situ pilot experiment deployed at Lake Caron, a shallow eutrophic lake in Quebec, for two summers. Turbidity, total suspended solids (TSS), total phosphorus (TP), blue-green-algae-phycocyanin (BGA-PC) and chlorophyll-a showed statistically significant average removal efficiencies of 53%, 22%, 49%, 57% and 56%, respectively, in the first year and 17%, 36%, 18%, 34% and 32% in the second. Statistical correlations were found with TSS, turbidity and variables that could represent particles (TP, turbidity, chlorophyll-a). Employing this in situ management method could be a promising remediation for not only shallow lakes (average depth < 2 m) but also for ponds, rivers, coastal regions, bays and other water types, to enable cleaner water for future generations.
Funder
NSERC
Concordia University
Titan Environmental Containment
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献