Multi-Step Internet Traffic Forecasting Models with Variable Forecast Horizons for Proactive Network Management

Author:

Saha Sajal1,Haque Anwar2,Sidebottom Greg3

Affiliation:

1. Department of Computer Science, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada

2. Department of Computer Science, Western University, London, ON N6A 3K7, Canada

3. Juniper Networks, Kanata, ON K2K 3E7, Canada

Abstract

The ISP (Internet Service Provider) industry relies heavily on internet traffic forecasting (ITF) for long-term business strategy planning and proactive network management. Effective ITF frameworks are necessary to manage these networks and prevent network congestion and over-provisioning. This study introduces an ITF model designed for proactive network management. It innovatively combines outlier detection and mitigation techniques with advanced gradient descent and boosting algorithms, including Gradient Boosting Regressor (GBR), Extreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGB), CatBoost Regressor (CBR), and Stochastic Gradient Descent (SGD). In contrast to traditional methods that rely on synthetic datasets, our model addresses the problems caused by real aberrant ISP traffic data. We evaluated our model across varying forecast horizons—six, nine, and twelve steps—demonstrating its adaptability and superior predictive accuracy compared to traditional forecasting models. The integration of the outlier detection and mitigation module significantly enhances the model’s performance, ensuring robust and accurate predictions even in the presence of data volatility and anomalies. To guarantee that our suggested model works in real-world situations, our research is based on an extensive experimental setup that uses real internet traffic monitoring from high-speed ISP networks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3