Research on GRU Neural Network Satellite Traffic Prediction Based on Transfer Learning

Author:

Li Ning,Hu LangORCID,Deng Zhong-Liang,Su Tong,Liu Jiang-Wang

Abstract

AbstractIn this paper, we propose a Gated Recurrent Unit(GRU) neural network traffic prediction algorithm based on transfer learning. By introducing two gate structures, such as reset gate and update gate, the GRU neural network avoids the problems of gradient disappearance and gradient explosion. It can effectively represent the characteristics of long correlation traffic, and can realize the expression of nonlinear, self-similar, long correlation and other characteristics of satellite network traffic. The paper combines the transfer learning method to solve the problem of insufficient online traffic data and uses the particle filter online training algorithm to reduce the training time complexity and achieve accurate prediction of satellite network traffic. The simulation results show that the average relative error of the proposed traffic prediction algorithm is 35.80% and 8.13% lower than FARIMA and SVR, and the particle filter algorithm is 40% faster than the gradient descent algorithm.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Computer Science Applications

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3