Abstract
Wireless Sensor Networks constitute an important part of the Internet of Things, and in a similar way to other wireless technologies, seek competitiveness concerning savings in energy consumption and information availability. These devices (sensors) are typically battery operated and distributed throughout a scenario of particular interest. However, they are prone to interference attacks which we know as jamming. The detection of anomalous behavior in the network is a subject of study where the routing protocol and the nodes increase power consumption, which is detrimental to the network’s performance. In this work, a simple jamming detection algorithm is proposed based on an exhaustive study of performance metrics related to the routing protocol and a significant impact on node energy. With this approach, the proposed algorithm detects areas of affected nodes with minimal energy expenditure. Detection is evaluated for four known cluster-based protocols: PEGASIS, TEEN, LEACH, and HPAR. The experiments analyze the protocols’ performance through the metrics chosen for a jamming detection algorithm. Finally, we conducted real experimentation with the best performing wireless protocols currently used, such as Zigbee and LoRa.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference45 articles.
1. Performance Evaluation of Localization Algorithms for WSNs
2. A survey on wireless sensor network: Energy and lifetime perspective;Ezhilarasi;Taga J. Graph. Technol.,2018
3. Optimal jamming attack strategies and network defense policies in wireless sensor networks;Li;IEEE Trans. Mob. Comput.,2010
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献