Author:
Zhu Yandan,Li Zecheng,Bi Hongchao,Shi Qilong,Han Yujun,Zhang Quanli
Abstract
To improve the wear resistance and fatigue life of Cu alloys, surface modification by combining the magnetron sputtering of Ti film followed by vacuum thermal diffusion is always applied, where the structure and composition of the fabricated film play a determinant role on the mechanical properties. In the present work, the evolution of the layered structure and the element distribution of the formed multi-phases coating on C17200 Cu alloy are investigated by mathematical calculation based on Fick’s law, and the experimental verification by the thermal diffusion of the gradient Cu-Ti film was undertaken under different temperatures and durations. The results show that the layered structure of the fabricated coating is dependent on the Cu-Ti atom concentration, the increasing time and the temperature, where a single or stratified layer is formed due to the generated Cu-Ti intermetallics for the inter-diffusion between the Cu and Ti atoms. The atom distribution by the proposed simulation method based on Fick’s law corresponds to the experimental results, which can be applied to designing the structure of the modification layer.
Funder
Natural Science Foundation of Jiangsu Province
University Research Foundation of Nanjing Institute of Technology
Key Laboratory of Research on Hydraulic and Hydro-Power Equipment Surface Engineering Technology of Zhejiang Province
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献