3D Characterization of Sorghum Panicles Using a 3D Point Cloud Derived from UAV Imagery

Author:

Chang Anjin,Jung JinhaORCID,Yeom JunhoORCID,Landivar Juan

Abstract

Sorghum is one of the most important crops worldwide. An accurate and efficient high-throughput phenotyping method for individual sorghum panicles is needed for assessing genetic diversity, variety selection, and yield estimation. High-resolution imagery acquired using an unmanned aerial vehicle (UAV) provides a high-density 3D point cloud with color information. In this study, we developed a detecting and characterizing method for individual sorghum panicles using a 3D point cloud derived from UAV images. The RGB color ratio was used to filter non-panicle points out and select potential panicle points. Individual sorghum panicles were detected using the concept of tree identification. Panicle length and width were determined from potential panicle points. We proposed cylinder fitting and disk stacking to estimate individual panicle volumes, which are directly related to yield. The results showed that the correlation coefficient of the average panicle length and width between the UAV-based and ground measurements were 0.61 and 0.83, respectively. The UAV-derived panicle length and diameter were more highly correlated with the panicle weight than ground measurements. The cylinder fitting and disk stacking yielded R2 values of 0.77 and 0.67 with the actual panicle weight, respectively. The experimental results showed that the 3D point cloud derived from UAV imagery can provide reliable and consistent individual sorghum panicle parameters, which were highly correlated with ground measurements of panicle weight.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference29 articles.

1. Sorghum Grain: From Genotype, Nutrition, and Phenolic Profile to Its Health Benefits and Food Applications

2. Sorghum food and industrial utilization;Rooney,2000

3. The Farming Systems Approach to Development and Appropriate Technology Generation;Norman,1995

4. Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3