Mapping the Lithological Features and Ore-Controlling Structures Related to Ni–Cu Mineralization in the Eastern Tian Shan, NW China from ASTER Data

Author:

Zheng Shuo,An YanfeiORCID,Shi Pilong,Zhao Tian

Abstract

The study of lithological features and tectonic evolution related to mineralization in the eastern Tian Shan is crucial for understanding the ore-controlling mechanism. In this paper, the lithological features and ore-controlling structure of the Huangshan Ni–Cu ore belt in the eastern Tian Shan are documented using advanced spaceborne thermal emission and reflection radiometer (ASTER) multispectral data based on spectral image processing algorithms, mineral indices and directional filter technology. Our results show that the algorithms of b2/b1, b6/b7 and b4/b8 from ASTER visible and near-infrared (VNIR)- shortwave infrared (SWIR) bands and of mafic index (MI), carbonate index (CI) and silica index (SI) from thermal infrared (TIR) bands are helpful to extract regional pyroxenite, external foliated gabbro bearing Ni–Cu ore bodies as well as the country rocks in the study area. The detailed interpretations and analyses of the geometrical feature of fault system and intrusive facies suggest that the Ni–Cu metallogenic belts are related to Carboniferous arc intrusive rocks and Permian wrench tectonics locating at the intersection of EW- and NEE-striking dextral strike-slip fault system, and the emplacement at the releasing bends in the southern margin of Kanggur Fault obviously controlled by secondary faults orthogonal or oblique to the Kanggur Fault in the post-collision extensional environment. Therefore, the ASTER data-based approach to map lithological features and ore-controlling structures related to the Ni–Cu mineralization are well performed. Moreover, a 3D geodynamic sketch map proposes that the strike-slip movement of Kanggur Fault in Huangshan-Kanggur Shear Zone (HKSZ) during early Permian controlled the migration and emplacement of three mafic/ultramafic intrusions bearing Ni–Cu derived from partial mantle melting and also favored CO2-rich fluids leaking to the participation of metallogenic processes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference63 articles.

1. Epithermal deposits in North Xinjiang, NW China

2. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China

3. Plate tectonics division, evolution and metallogenic settings in eastern Tianshan mountains, NW-China;Qin;Xinjiang Geol.,2002

4. Types of major ore deposits, division of metallogenic belts in east-ern Tianshan, and discrimination of potential prospects of Cu, Au, Ni mineralization;Qin;Xinjiang Geol.,2003

5. Late Paleozoic base and precious metal deposits, East Tianshan, Xinjiang, China: Characteristics and geodynamic setting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3