Geo-Object-Based Vegetation Mapping via Machine Learning Methods with an Intelligent Sample Collection Scheme: A Case Study of Taibai Mountain, China

Author:

Wu TianjunORCID,Luo Jiancheng,Gao Lijing,Sun Yingwei,Dong Wen,Zhou Ya’nanORCID,Liu Wei,Hu XiaodongORCID,Xi Jiangbo,Wang Changpeng,Yang Yun

Abstract

Precise vegetation maps of mountainous areas are of great significance to grasp the situation of an ecological environment and forest resources. In this paper, while multi-source geospatial data can generally be quickly obtained at present, to realize effective vegetation mapping in mountainous areas when samples are difficult to collect due to their perilous terrain and inaccessible deep forest, we propose a novel and intelligent method of sample collection for machine-learning (ML)-based vegetation mapping. First, we employ geo-objects (i.e., polygons) from topographic partitioning and constrained segmentation as basic mapping units and formalize the problem as a supervised classification process using ML algorithms. Second, a previously available vegetation map with rough-scale label information is overlaid on the geo-object-level polygons, and candidate geo-object-based samples can be identified when all the grids’ labels of vegetation types within the geo-objects are the same. Third, various kinds of geo-object-level features are extracted according to high-spatial-resolution remote sensing (HSR-RS) images and multi-source geospatial data. Some unreliable geo-object-based samples are rejected in the candidate set by comparing their features and the rules based on local expert knowledge. Finally, based on these automatically collected samples, we train the model using a random forest (RF)-based algorithm and classify all the geo-objects with labels of vegetation types. A case experiment of Taibai Mountain in China shows that the methodology has the ability to achieve good vegetation mapping results with the rapid and convenient sample collection scheme. The map with a finer geographic distribution pattern of vegetation could clearly promote the vegetation resources investigation and monitoring of the study area; thus, the methodological framework is worth popularizing in the mapping areas such as mountainous regions where the field survey sampling is difficult to implement.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3