Iterative Method of Discriminant Analysis to Classify Beech (Fagus sylvatica L.) Forest

Author:

Sánchez-Medina AlvaroORCID,Ayuga-Téllez EsperanzaORCID,Grande-Ortiz Maria AngelesORCID,González-García ConcepciónORCID,García-Abril AntonioORCID

Abstract

We present a new method for the classification of beech (Fagus sylvatica L.) forest plots based on discriminant and frequency analysis. This method can be used as a tool to allow experts to stratify beech forests in a simple and precise way. The method is based on discriminant analysis with cross-validation of 13 variables measured in 142 plots from the 2005 Second National Forest Inventory and 63 plots from an inventory installed in specific locations together with a frequency analysis of the qualifying variables. In the first stage, the method uses the results of a frequency analysis fitted with an iterative discriminant analysis that allows improving the subsequent classifications taking into account the results of the analysis and the correctly- and wrong-classified plots. This method is applied to beech forest in Burgos (Spain) where six structural groups were described. The discriminant functions show that forest structure depends basically on diameter distribution and almost 94% of the plots are correctly classified using this methodology. The high level of correctly assigned plots indicates an accurate classification of structure that can be used to stratify beech forests with only the diameter at breast height measurement.

Publisher

MDPI AG

Subject

Forestry

Reference53 articles.

1. Desarrollo de las tipologías de masas forestales en España;Aunós;Actas Del Congr. For. Español,2009

2. Regeneration Dynamics Following the Formation of Understory Gaps in a Slovakian Beech Virgin Forest

3. Gap Structure and Regeneration in the Mixed Old-Growth Forests of National Nature Reserve Sitno, Slovakia

4. Forest Structure and Diversity;Gadow,2012

5. Spatial Scale and Stand Structure in Northern Hardwood Forests: Implications for Quantifying Diameter Distributions;Janowiak;For. Sci.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3