Affiliation:
1. Applied Physics Lab for Plasma Engineering (APPLE), Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
2. Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
Abstract
Hydroxyl radicals (OH) play a crucial role in plasma-bio applications. As pulsed plasma operation is preferred, and even expanded to the nanosecond range, it is essential to study the relationship between OH radical production and pulse characteristics. In this study, we use optical emission spectroscopy to investigate OH radical production with nanosecond pulse characteristics. The experimental results reveal that longer pulses generate more OH radicals. To confirm the effect of pulse properties on OH radical generation, we conduct computational chemical simulations, focusing on two types of pulse properties: pulse instant power and pulse width. The simulation results show that, similar to the experimental results, longer pulses generate more OH radicals. In the nanosecond range, reaction time is critical for OH radical generation. In terms of chemical aspects, N2 metastable species mainly contribute to OH radical generation. It is a unique behavior observed in nanosecond range pulsed operation. Furthermore, humidity can turn over the tendency of OH radical production in nanosecond pulses. In a humid condition, shorter pulses are advantageous for generating OH radicals. Electrons play key roles in this condition and high instant power contributes to them.
Funder
Ministry of Science ICT and Future Planning
Ministry of Trade, Industry and Energy
Korea Semiconductor Research Consortium
Ministry of Education
Korea Institute of Machinery and Materials
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献