Preparation and Applications of Green Thermoplastic and Thermosetting Nanocomposites Based on Nanolignin

Author:

Puglia DeboraORCID,Luzi FrancescaORCID,Torre Luigi

Abstract

The development of bio-based materials is of great importance in the present environmental circumstances; hence, research has greatly advanced in the valorization of lignin from lignocellulosic wastes. Lignin is a natural polymer with a crosslinked structure, valuable antiradical activity, unique thermal- and UV-absorption properties, and biodegradability, which justify its use in several prospective and useful application sectors. The active functionalities of lignin promote its use as a valuable material to be adopted in the composite and nanocomposites arenas, being useful and suitable for consideration both for the synthesis of matrices and as a nanofiller. The aim of this review is to summarize, after a brief introduction on the need for alternative green solutions to petroleum-based plastics, the synthesis methods for bio-based and/or biodegradable thermoplastic and thermosetting nanocomposites, along with the application of lignin nanoparticles in all green polymeric matrices, thus generating responsiveness towards the sustainable use of this valuable product in the environment.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3