Optimization of the Electrospray Process to Produce Lignin Nanoparticles for PLA-Based Food Packaging

Author:

Daassi Rodrigue12ORCID,Durand Kalvin12,Rodrigue Denis2ORCID,Stevanovic Tatjana1

Affiliation:

1. Renewable Materials Research Centre (CRMR), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada

2. Chemical Engineering Department, Université Laval, Quebec City, QC G1V 0A6, Canada

Abstract

The development of new processing methods is required in order to meet the continuous demand for thinner films with excellent barrier properties for food packaging and other applications. In this study, rice husk organosolv lignin nanoparticles were prepared using the electrospray method, which were applied to produce polylactic acid (PLA)-based films for food packaging. The effect of the following electrospray parameters has been investigated: lignin concentration (LC) ranging from 5–50 mg/mL, flow rate (FR) from 0.5–1 mL/min, applied voltage from 10–30 kV, and tip-to-collector distance (TCD) from 10–25 cm, on the morphology, size, polydispersity index (PDI), and Zeta potential (ZP) of lignin nanoparticles (LNPs). The response surface methodology with a Box-Behnken design was applied to optimize these parameters, while dynamic light scattering (DLS) and scanning electron microscopy (SEM) analyses were used to characterize the controlled LNPs. The results showed that the LNPs shape and sizes represent a balance between the solvent evaporation, LC, applied voltage, TCD and FR. The application of optimal electrospray conditions resulted in the production of LNPs with a spherical shape and a minimal size of 260 ± 10 nm, a PDI of 0.257 ± 0.02, and a ZP of −35.2 ± 4.1 mV. The optimal conditions were achieved at LC = 49.1 mg/mL and FR = 0.5 mL/h under an applied voltage of 25.4 kV and TCD = 22 cm. Then, the optimized LNPs were used to improve the properties of PLA-based films. Three types of PLA-lignin blend films were casted, namely lignin/PLA, LNPs/PLA and PLA-grafted LNPs. PLA-grafted LNPs exhibited a more uniform dispersion in PLA for lignin contents of up to 10% than other composite samples. Increasing the lignin content from 5% to 10% in PLA-grafted LNPs resulted in a significant increase in elongation at break (up to four times higher than neat PLA). The presence of PLA-grafted lignin led to a substantial reduction in optical transmittance in the UV range, dropping from 58.7 ± 3.0% to 1.10 ± 0.01%, while maintaining excellent transparency to visible light compared to blends containing lignin or LNPs. Although the antioxidant capacity of unmodified lignin is well-known, a substantial increase in antioxidant capacity was observed in LNPs and PLA-grafted LNP films, with values exceeding 10 times and 12 times that of neat PLA, respectively. These results confirm the significant potential of using studied films in food packaging applications.

Funder

IC-IMPACTS

Denis Rodrigue

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3