The mechanochemistry of lanthanum dihydride (LaH\(_{2}\)) with hydrogen (H\(_{2}\)) using the ball-mill process and the effect of oxidation on the resulting products

Author:

PRAMONO Andika Widya,HERBIROWO Satrio,IMADUDDIN Agung,ANTORO Iwan Dwi,NUGRAHA Heri,Hendrik ,SYAMPURWADI Anung,NUFUS Ines Hayatun,UMNA Nihayatul,DIBA Silvia Farah,AMALIYAH Fina Fitratun

Abstract

The complex behavior of LaH2 during ball milling was investigated in this study, with its mechanical, chemical, and morphological changes explored. The relationship between milling time and hydrogen pressure reduction was uncovered through detailed experiments, reflecting the dynamic nature of the process. A transient yet significant event was observed upon unsealing the milling jar post-milling: the emergence of a minor fire ember, indicative of the interplay between mechanical forces and chemical reactivity within the LaH2 powder. Profound changes in the structure, composition, and shape were unraveled using advanced techniques such as X-ray diffraction (XRD), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX), and particle size distribution analysis. The resulting powder exhibited a dual-phase composition of lanthanum dihydride (LaH2, 68.1% to 71.5%) and lanthanum oxide (La2O3, 28.5% to 31.9%), reflecting a dynamic chemical equilibrium during milling. Particle size distribution analysis revealed a notable increase in average diameter to 6420 nm, accompanied by a polydispersity index (PDI) of 0.831, signifying a broadening compared to the initial LaH2 powder. The morphological evolution of the powder was elucidated through SEM imaging, showing predominantly spherical and rounded forms, indicating extensive particle agglomeration and plastic deformation during milling. Additionally, the formation of oxide layers on the powder surface, intertwined with pronounced particle agglomeration, was highlighted through EDX mapping, shedding light on the mechanical aspects of morphological evolution during milling. These findings contribute to our understanding of LaH2 behavior under extreme mechanical and chemical conditions and have implications for materials processing, hydrogen storage technologies, and broader applications in materials science and engineering.

Publisher

Metallurgy and Materials Science Research Institute, Chulalongkorn University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3