Investigating the Bond Strength of FRP Laminates with Concrete Using LIGHT GBM and SHAPASH Analysis

Author:

Amin Muhammad NasirORCID,Salami Babatunde AbiodunORCID,Zahid Muhammad,Iqbal Mudassir,Khan KaffayatullahORCID,Abu-Arab Abdullah Mohammad,Alabdullah Anas AbdulalimORCID,Jalal Fazal E.ORCID

Abstract

The corrosion of steel reinforcement necessitates regular maintenance and repair of a variety of reinforced concrete structures. Retrofitting of beams, joints, columns, and slabs frequently involves the use of fiber-reinforced polymer (FRP) laminates. In order to develop simple prediction models for calculating the interfacial bond strength (IBS) of FRP laminates on a concrete prism containing grooves, this research evaluated the nonlinear capabilities of three ensemble methods—namely, random forest (RF) regression, extreme gradient boosting (XGBoost), and Light Gradient Boosting Machine (LIGHT GBM) models—based on machine learning (ML). In the present study, the IBS was the desired variable, while the model comprised five input parameters: elastic modulus x thickness of FRP (EfTf), width of FRP plate (bf), concrete compressive strength (fc′), width of groove (bg), and depth of groove (hg). The optimal parameters for each ensemble model were selected based on trial-and-error methods. The aforementioned models were trained on 70% of the entire dataset, while the remaining data (i.e., 30%) were used for the validation of the developed models. The evaluation was conducted on the basis of reliable accuracy indices. The minimum value of correlation of determination (R2 = 0.82) was observed for the testing data of the RF regression model. In contrast, the highest (R2 = 0.942) was obtained for LIGHT GBM for the training data. Overall, the three models showed robust performance in terms of correlation and error evaluation; however, the trend of accuracy was obtained as follows: LIGHT GBM > XGBoost > RF regression. Owing to the superior performance of LIGHT GBM, it may be considered a reliable ML prediction technique for computing the bond strength of FRP laminates and concrete prisms. The performance of the models was further supplemented by comparing the slopes of regression lines between the observed and predicted values, along with error analysis (i.e., mean absolute error (MAE), and root-mean-square error (RMSE)), predicted-to-experimental ratio, and Taylor diagrams. Moreover, the SHAPASH analysis revealed that the elastic modulus x thickness of FRP and width of FRP plate are the factors most responsible for IBS in FRP.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3