A High-Generalizability Machine Learning Framework for Analyzing the Homogenized Properties of Short Fiber-Reinforced Polymer Composites

Author:

Zhao Yunmei1ORCID,Chen Zhenyue1,Jian Xiaobin2

Affiliation:

1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

2. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China

Abstract

This study aims to develop a high-generalizability machine learning framework for predicting the homogenized mechanical properties of short fiber-reinforced polymer composites. The ensemble machine learning model (EML) employs a stacking algorithm using three base models of Extra Trees (ET), eXtreme Gradient Boosting machine (XGBoost), and Light Gradient Boosting machine (LGBM). A micromechanical model of a two-step homogenization algorithm is adopted and verified as an effective approach to composite modeling with randomly distributed fibers, which is integrated with finite element simulations for providing a high-quality ground-truth dataset. The model performance is thoroughly assessed for its accuracy, efficiency, interpretability, and generalizability. The results suggest that: (1) the EML model outperforms the base members on prediction accuracy, achieving R2 values of 0.988 and 0.952 on the train and test datasets, respectively; (2) the SHapley Additive exPlanations (SHAP) analysis identifies the Young’s modulus of matrix, fiber, and fiber content as the top three factors influencing the homogenized properties, whereas the anisotropy is predominantly determined by the fiber orientations; (3) the EML model showcases good generalization capability on experimental data, and it has been shown to be more effective than high-fidelity computational models by significantly lowering computational costs while maintaining high accuracy.

Funder

National Natural Science Foundation of China

Shanghai Pujiang Talent Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3