Affiliation:
1. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
2. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
Abstract
This study aims to develop a high-generalizability machine learning framework for predicting the homogenized mechanical properties of short fiber-reinforced polymer composites. The ensemble machine learning model (EML) employs a stacking algorithm using three base models of Extra Trees (ET), eXtreme Gradient Boosting machine (XGBoost), and Light Gradient Boosting machine (LGBM). A micromechanical model of a two-step homogenization algorithm is adopted and verified as an effective approach to composite modeling with randomly distributed fibers, which is integrated with finite element simulations for providing a high-quality ground-truth dataset. The model performance is thoroughly assessed for its accuracy, efficiency, interpretability, and generalizability. The results suggest that: (1) the EML model outperforms the base members on prediction accuracy, achieving R2 values of 0.988 and 0.952 on the train and test datasets, respectively; (2) the SHapley Additive exPlanations (SHAP) analysis identifies the Young’s modulus of matrix, fiber, and fiber content as the top three factors influencing the homogenized properties, whereas the anisotropy is predominantly determined by the fiber orientations; (3) the EML model showcases good generalization capability on experimental data, and it has been shown to be more effective than high-fidelity computational models by significantly lowering computational costs while maintaining high accuracy.
Funder
National Natural Science Foundation of China
Shanghai Pujiang Talent Program
Fundamental Research Funds for the Central Universities
Subject
Polymers and Plastics,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献