Supramolecular Structure and Mechanical Performance of κ-Carrageenan–Gelatin Gel

Author:

Makarova Anastasiya O.ORCID,Derkach Svetlana R.ORCID,Kadyirov Aidar I.ORCID,Ziganshina Sufia A.,Kazantseva Mariia A.,Zueva Olga S.ORCID,Gubaidullin Aidar T.ORCID,Zuev Yuriy F.ORCID

Abstract

In this work, by means of complex physicochemical methods the structural features of a composite κ-carrageenan–gelatin system were studied in comparison with initial protein gel. The correlation between the morphology of hydrogels and their mechanical properties was demonstrated through the example of changes in their rheological characteristics. The experiments carried out with PXRD, SAXS, AFM and rheology approaches gave new information on the structure and mechanical performance of κ-carrageenan–gelatin hydrogel. The combination of PXRD, SAXS and AFM results showed that the morphological structures of individual components were not observed in the composite protein–polysaccharide hydrogels. The results of the mechanical testing of initial gelatin and engineered κ-carrageenan–gelatin gel showed the substantially denser parking of polymer chains in the composite system due to a significant increase in intermolecular protein–polysaccharide contacts. Close results were indirectly followed from the SAXS estimations—the driving force for the formation of the common supramolecular structural arrangement of proteins and polysaccharides was the increase in the density of network of macromolecular chains entanglements; therefore, an increase in the energy costs was necessary to change the conformational rearrangements of the studied system. This increase in the macromolecular arrangement led to the growth of the supramolecular associate size and the growth of interchain physical bonds. This led to an increase in the composite gel plasticity, whereas the enlargement of scattering particles made the novel gel system not only more rigid, but also more fragile.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3