Abstract
Shape-memory polymers (SMPs) show great potential in various emerging applications, such as artificial muscles, soft actuators, and biomedical devices, owing to their unique shape recovery-induced contraction force. However, the factors influencing this force remain unclear. Herein, we designed a simple polymer blending system using a series of tetra-branched poly(ε-caprolactone)-based SMPs with long and short branch-chain lengths that demonstrate decreased crystallinity and increased crosslinking density gradients. The resultant polymer blends possessed mechanical properties manipulable across a wide range in accordance with the crystallinity gradient, such as stretchability (50.5–1419.5%) and toughness (0.62–130.4 MJ m−3), while maintaining excellent shape-memory properties. The experimental results show that crosslinking density affected the shape recovery force, which correlates to the SMPs’ energy storage capacity. Such a polymer blending system could provide new insights on how crystallinity and crosslinking density affect macroscopic thermal and mechanical properties as well as the shape recovery force of SMP networks, improving design capability for future applications.
Funder
JSPS KAKENHI Grant-in-Aid
Innovative Science and Technology Initiative
Subject
Polymers and Plastics,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献