New Building Blocks for Self-Healing Polymers

Author:

Platonova Elena,Ponomareva Polina,Lokiaeva Zalina,Pavlov Alexander,Nelyub Vladimir,Polezhaev AlexanderORCID

Abstract

The healing efficiency in self-healing materials is bound by the ability to form blends between the prepolymer and curing agent. One of the problems in the development of self-healing polymers is the reduced affinity of the bismaleimide curing agent for the elastomeric furan-containing matrix. Even when stoichiometric amounts of both components are applied, incompatibility of components can significantly reduce the effectiveness of self-healing, and lead to undesirable side effects, such as crystallization of the curing agent, in the thickness and on the surface. This is exactly what we have seen in the development of linear and cross-linked PUs using BMI as a hardener. In this work, we present a new series of the di- and tetrafuranic isocyanate-related ureas—promising curing agents for the development of polyurethanes-like self-healing materials via the Diels–Alder reaction. The commonly used isocyanates (4,4′-Methylene diphenyl diisocyanate, MDI; 2,4-Tolylene diisocyanate, TDI; and Hexamethylene diisocyanate, HDI) and furfurylamine, difurfurylamine, and furfuryl alcohol (derived from biorenewables) as furanic compounds were utilized for synthesis. The remendable polyurethane for testing was synthesized from a maleimide-terminated prepolymer and one of the T-series urea. Self-healing properties were investigated by thermal analysis. Molecular mass was determined by gel permeation chromatography. The properties of the new polymer were compared with polyurethane from a furan-terminated analog. Visual tests showed that the obtained material has thermally induced self-healing abilities. Resulting polyurethane (PU) has a rather low fusing point and thus may be used as potential material for Fused Deposition Modeling (FDM) 3D printing.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference41 articles.

1. Evaluation of biological degradation of polyurethanes;Magnin;Biotechnol. Adv.,2020

2. Polyurethane types, synthesis and applications—A review;Akindoyo;RSC Adv.,2016

3. Elsheikh, A. (2022). Bistable Morphing Composites for Energy-Harvesting Applications. Polymers, 14.

4. Innovative porous polyurethane-polyisocyanurate foams based on rapeseed oil and modified with expandable graphite;Prociak;Ind. Crop. Prod.,2017

5. Connolly, M., King, J., Shidaker, T., and Duncan, A. (2005, January 28–30). Pultruding Polyurethane Composite Profiles: Practical Guidelines for Injection Box Design, Component Metering Equipment and Processing. Proceedings of the 2005 Convention and Trade Show American Composites Manufacturers Association, Columbus, OH, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3