New Self-Healing Metallosupramolecular Copolymers with a Complex of Cobalt Acrylate and 4′-Phenyl-2,2′:6′,2″-terpyridine

Author:

Sorin Evgeny S.12ORCID,Baimuratova Rose K.1ORCID,Uflyand Igor E.34ORCID,Perepelitsina Evgeniya O.1,Anokhin Denis V.12,Ivanov Dmitry A.125ORCID,Dzhardimalieva Gulzhian I.13ORCID

Affiliation:

1. Federal Research Centre of Problems of Chemical Physics and Medicinal Chemistry RAS, 142432 Chernogolovka, Russia

2. Department of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119234 Moscow, Russia

3. Moscow Aviation Institute, National Research University, 125993 Moscow, Russia

4. Department of Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russia

5. Institut de Sciences des Matériaux de Mulhouse (CNRS UMR 7361), 68057 Mulhouse, France

Abstract

Currently, the chemistry of self-healing polymers is aimed not only at obtaining materials with high self-healing efficiency, but also at improving their mechanical performance. This paper reports on a successful attempt to obtain self-healing copolymers films of acrylic acid, acrylamide and a new metal-containing complex of cobalt acrylate with a 4′-phenyl-2,2′:6′,2″-terpyridine ligand. Samples of the formed copolymer films were characterized by ATR/FT-IR and UV-vis spectroscopy, elemental analysis, DSC and TGA, SAXS, WAXS and XRD studies. The incorporation of the metal-containing complex directly into the polymer chain results in an excellent tensile strength (122 MPa) and modulus of elasticity (4.3 GPa) of the obtained films. The resulting copolymers demonstrated self-healing properties both at acidic pH (assisted by HCl healing) with effective preservation of mechanical properties, and autonomously in a humid atmosphere at room temperature without the use of initiators. At the same time, with a decrease in the content of acrylamide, a decrease in the reducing properties was observed, possibly due to an insufficient amount of amide groups to form hydrogen bonds through the interface with terminal carboxyl groups, as well as a decrease in the stability of complexes in samples with a high content of acrylic acid.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3