Use of Green Fs Lasers to Generate a Superhydrophobic Behavior in the Surface of Wind Turbine Blades

Author:

Rivera-Sahún Joaquín,Porta-Velilla Luis,de la Fuente Germán F.ORCID,Angurel Luis A.ORCID

Abstract

Ice generation on the surface of wind generator blades can affect the performance of the generator in several aspects. It can deteriorate sensor performance, reduce efficiency, and cause mechanical failures. One of the alternatives to minimize these effects is to include passive solutions based on the modification of the blade surfaces, and in particular to generate superhydrophobic behavior. Ultra-short laser systems enable improved micromachining of polymer surfaces by reducing the heat affected zone (HAZ) and improving the quality of the final surface topography. In this study, a green fs laser is used to micromachine different patterns on the surface of materials with the same structure that can be found in turbine blades. Convenient optimization of surface topography via fs laser micromachining enables the transformation of an initially hydrophilic surface into a superhydrophobic one. Thus, an initial surface finish with a contact angle ca. 69° is transformed via laser treatment into one with contact angle values above 170°. In addition, it is observed that the performance of the surface is maintained or even improved with time. These results open the possibility of using lasers to control turbine blade surface microstructure while avoiding the use of additional chemical coatings. This can be used as a complementary passive treatment to avoid ice formation in these large structures.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anti-icing polyurethane coating on glass fiber-reinforced plastics induced by femtosecond laser texturing;Applied Surface Science;2024-07

2. Superhydrophobic and Anti‐Icing Surface by Femtosecond Laser Direct Writing;Advanced Engineering Materials;2023-09-08

3. Green Materials in Wind Turbines;Reference Module in Materials Science and Materials Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3