Superhydrophobic and Anti‐Icing Surface by Femtosecond Laser Direct Writing

Author:

Zhu Zhenkai12ORCID,Wu Peichao23,Juodkazis Saulius4,Wang Ji2,Yao Songbai2,Yao Jianhua1,Zhang Wenwu2ORCID

Affiliation:

1. College of Mechanical Engineering Zhejiang University of Technology Hangzhou 310014 China

2. Zhejiang Key Laboratory of Aeroengine Extreme Manufacturing Technology Research Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences Ningbo 315201 China

3. University of Chinese Academy of Science Beijing 100049 China

4. Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials(SEAM) Swinburne University of Technology John Street Hawthorn VIC 3122 Australia

Abstract

Glass fiber‐reinforced polymer (GFRP) is formed with glass fiber as the reinforcing material and resin as the matrix. It is widely used in wind turbine blades because of its lightweight, high strength, and corrosion resistance properties. Herein, a method to prepare superhydrophobic GFRP surfaces by femtosecond laser direct writing combined with fluoroalkylsilane modification is demonstrated. The prepared GFRP surface has excellent superhydrophobicity with contact angle of 163.9° and sliding angle of 3.8°. In the ice resistance tests, the icing delay time is extended from 33 to 273 s at −5 °C. The ice adhesion strength is reduced from 217.4 to 40.3 kPa. The surface still has superhydrophobicity and ice adhesion strength of less than 100 kPa after ten cycles of the test. The laser exposure conditions are optimized for water/ice repelling and are at high intensity of 4 TW cm−2 pulse−1 and 2.5 m s−1 beam travel speed, which make the presented approach efficient for fabrication over industrially large areas.

Funder

Natural Science Foundation of Ningbo

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3