Efficient Photoacoustic Image Synthesis with Deep Learning

Author:

Rix Tom12ORCID,Dreher Kris K.13ORCID,Nölke Jan-Hinrich12ORCID,Schellenberg Melanie1245ORCID,Tizabi Minu D.15,Seitel Alexander15ORCID,Maier-Hein Lena12456ORCID

Affiliation:

1. Division of Intelligent Medical Systems, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 223, 69120 Heidelberg, Germany

2. Faculty of Mathematics and Computer Sciences, Heidelberg University, 69120 Heidelberg, Germany

3. Faculty of Physics and Astronomy, Heidelberg University, 69120 Heidelberg, Germany

4. HIDSS4Health—Helmholtz Information and Data Science School for Health, 69120 Heidelberg, Germany

5. National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, 69120 Heidelberg, Germany

6. Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany

Abstract

Photoacoustic imaging potentially allows for the real-time visualization of functional human tissue parameters such as oxygenation but is subject to a challenging underlying quantification problem. While in silico studies have revealed the great potential of deep learning (DL) methodology in solving this problem, the inherent lack of an efficient gold standard method for model training and validation remains a grand challenge. This work investigates whether DL can be leveraged to accurately and efficiently simulate photon propagation in biological tissue, enabling photoacoustic image synthesis. Our approach is based on estimating the initial pressure distribution of the photoacoustic waves from the underlying optical properties using a back-propagatable neural network trained on synthetic data. In proof-of-concept studies, we validated the performance of two complementary neural network architectures, namely a conventional U-Net-like model and a Fourier Neural Operator (FNO) network. Our in silico validation on multispectral human forearm images shows that DL methods can speed up image generation by a factor of 100 when compared to Monte Carlo simulations with 5×108 photons. While the FNO is slightly more accurate than the U-Net, when compared to Monte Carlo simulations performed with a reduced number of photons (5×106), both neural network architectures achieve equivalent accuracy. In contrast to Monte Carlo simulations, the proposed DL models can be used as inherently differentiable surrogate models in the photoacoustic image synthesis pipeline, allowing for back-propagation of the synthesis error and gradient-based optimization over the entire pipeline. Due to their efficiency, they have the potential to enable large-scale training data generation that can expedite the clinical application of photoacoustic imaging.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3