Multi-Physics Multi-Objective Optimal Design of Bearingless Switched Reluctance Motor Based on Finite-Element Method

Author:

Zhang JingweiORCID,Wang Honghua,Zhu Sa,Lu Tianhang

Abstract

The bearingless switched reluctance motor (BSRM) integrates the switched reluctance motor (SRM) with the magnetic bearings, which avoids mechanical bearings-loss and makes it promising in high-speed applications. In this paper, a comprehensive framework for the multi-physics multi-objective optimal design of BSRMs based on finite-element method (FEM) is proposed. At first, the 2-D electromagnetic model of a fabricated initial design prototype is built and solved by the open-source FEM software, Elmer. The iron loss model in Elmer based on the Fourier series is modified by a transient iron loss model with less computation time. Besides, a simplified lumped-parameter (LP) thermal model of the BSRM is applied to estimate the temperature rise of BSRM in the steady state. Then, the comprehensive framework for the multi-physics multi-objective optimal design of BSRMs based on FEM is proposed. The objectives, constraints, and decision variables for optimization are determined. The multi-objective genetic particle swarm optimizer is utilized to obtain the Pareto front of optimization. The electromagnetic performance of the final optimal design is compared with the initial design. Comparison results show that the average electromagnetic torque and the efficiency are significantly enhanced.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3