Intelligent Optimization of Switched Reluctance Motor Using Genetic Aggregation Response Surface and Multi-Objective Genetic Algorithm for Improved Performance

Author:

Abunike Chiweta Emmanuel,Okoro Ogbonnaya InyaORCID,Aphale Sumeet S.ORCID

Abstract

In this paper, a thorough framework for multiobjective design optimization of switched reluctance motor (SRM) is proposed. Selection of stator and rotor pole embrace coefficients is an essential step in the SRM design process since it influences torque output and torque ripple in SRM. The problem of determining optimal pole embrace is formulated as a multi-objective optimization problem with the objective of optimizing average torque, efficiency and torque ripple, and response surface models were obtained based on the genetic aggregation method. The results obtained by genetic aggregation response surface (GARS) and the non-dominated genetic algorithm (NSGA-II) were validated with the finite element method (FEM) model of the initial SRM. The optimized model displayed better efficiency profile over a wide speed range. The initial and optimized models recorded maximum efficiencies of 85% and 94.05%, respectively, at 2000 rpm. The efficiency values of 93.97–94.05% were achieved for the three pareto optimal candidates. The findings indicate the viability of the suggested strategy and support the use of GARS and NSGA-II as useful methods for addressing SRM key challenges.

Funder

Commonwealth Scholarship Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3