Abstract
In this paper, a thorough framework for multiobjective design optimization of switched reluctance motor (SRM) is proposed. Selection of stator and rotor pole embrace coefficients is an essential step in the SRM design process since it influences torque output and torque ripple in SRM. The problem of determining optimal pole embrace is formulated as a multi-objective optimization problem with the objective of optimizing average torque, efficiency and torque ripple, and response surface models were obtained based on the genetic aggregation method. The results obtained by genetic aggregation response surface (GARS) and the non-dominated genetic algorithm (NSGA-II) were validated with the finite element method (FEM) model of the initial SRM. The optimized model displayed better efficiency profile over a wide speed range. The initial and optimized models recorded maximum efficiencies of 85% and 94.05%, respectively, at 2000 rpm. The efficiency values of 93.97–94.05% were achieved for the three pareto optimal candidates. The findings indicate the viability of the suggested strategy and support the use of GARS and NSGA-II as useful methods for addressing SRM key challenges.
Funder
Commonwealth Scholarship Commission
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献