Simulation-Based Comparison Between the Thermal Behavior of Coaxial and Double U-Tube Borehole Heat Exchangers

Author:

Quaggiotto ,Zarrella ,Emmi ,De Carli ,Pockelé ,Vercruysse ,Psyk ,Righini ,Galgaro ,Mendrinos ,Bernardi

Abstract

In this study, the thermal behavior of the coaxial and double U borehole heat exchangers was investigated using numerical simulations in both the long- and short-term. As a reference for borehole heat exchanger specifications, the existing coaxial and double U probes of a geothermal heat pump installed within the Horizon 2020 research project named “Cheap GSHPs” were considered. Nine years of simulations revealed that when borehole heat exchangers are subjected to a balanced thermal load, and intermittent operating modes of the ground source heat pump system are set, the coaxial pipes’ configuration provides better thermal performance due to the higher thermal capacitance of the heat-carrier fluid and the lower borehole thermal resistance. The analysis was conducted considering two different types of ground with different thermal conductivity values. As result, the more conductive ground type highlights the higher yield of the coaxial probe.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3