Abstract
Pollution-induced flashover is a serious threat to the safe operation of power systems. With the development of High Voltage Direct Current (HVDC), it is necessary to study insulator contamination in DC electric fields. In this paper, the energized wind tunnel contamination test was conducted in order to systematically study the pollution ratio, k (ratio of non-soluble deposit density (NSDD) of a DC-energized condition to a non-energized condition), under different environmental parameters. Later, a two-dimensional contamination model of short samples of an HVDC composite insulator was established. The particle motion characteristics under different environmental parameters were then analyzed by the finite element method (FEM). The research results showed that—the DC electric field had an influence on particle motion but in different environments, the degree of influence was different. In addition, k was found to largely vary, with a variation in the environmental parameters. When the electrical stress (Es) increased from 0 to 70 kV/m, k increased gradually. However, when the wind speed (ws) increased, k experienced a decreasing trend. Finally, as the particle diameter (dp) decreased, k increased at first, followed by a decrease, and then again showed an increase. The results of the pollution ratio, k, for different environmental parameters are of great importance for guiding anti-pollution work in power systems.
Funder
National Key Research and Development Program of China
Science and Technology Foundation of the State Grid Corporation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献