Research on Silicone Rubber Sheds of Decay-Like Fractured Composite Insulators Based on Hardness, Hydrophobicity, NMR, and FTIR

Author:

Zhang Zhijin,Pang Guohui,Lu Ming,Gao Chao,Jiang Xingliang

Abstract

The safety and stability of power systems are seriously threatened by the decay-like fracture of composite insulators. This paper analyzes the aging characteristics (physical properties, NMR, and FTIR) of the silicone rubber sheds of the decay-like fractured insulator. The same V-string insulator and a new insulator are used for comparison. The study shows that the sheds’ degradation is concentrated on the side with heavy pollution. The physical properties (appearance, pollution, hardness, and hydrophobicity) of the high voltage end decrease significantly compared to other positions, but there is no direct connection between the physical properties of sheds and the decay-like fracture of the core rod. The severity of aging increases with a decrease in the equivalent transverse relaxation time T2. The main chain of the PDMS material was severely damaged at the location of the insulator fracture. NMR and FTIR can well judge the aging degree of silicone rubber housings. However, no definite characteristic quantity can characterize the decay-like fracture. It is challenging to evaluate the decay-like fracture of the silicone rubber shed only by its aging degree.

Funder

State Grid Corporation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference42 articles.

1. 50 years in the development of polymer suspension-type insulators

2. The rapid development of silicone rubber composite insulators in China;Liang;High Volt. Eng.,2016

3. Outdoor HV composite polymeric insulators

4. Aging of silicone rubber-based composite insulators under multi-stressed conditions: an overview

5. Mechanical properties and damage characteristics of composite in-sulator sheds operated on islands;Xie;High Volt. Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3