Distribution Characteristics and Influence Factors of Rhizosphere Glomalin-Related Soil Protein in Three Vegetation Types of Helan Mountain, China

Author:

Hou Hui,Yan Peixuan,Xie Qinmi,Zhao Hongliang,Zhang Haiying,Lv Yingze,Pang Danbo,Hu Yang,Li Jingyao,Wang Fang,Ni XiluORCID

Abstract

To reveal distribution characteristics of glomalin-related soil protein (GRSP) and it’s influencing factors under different vegetation types in the drought-tolerant shrubland of Helan Mountain, we chose three vegetation types as study subjects: Stipa breviflora (Grassland, G), Amygdalus mongolica (Shrub, S), and Stipa breviflora-Amygdalus mongolica (Grassland-Shrub, G×S) and bare soil was used as the control (CK). The contents of easily extractable glomalin-related soil protein (EE-GRSP) and total glomalin-related soil protein (T-GRSP), soil physicochemical properties, colonization rate, spore density, and species abundance in the rhizosphere soil were determined. The results indicated that EE-GRSP and T-GRSP showed significant difference (p < 0.05) among vegetation types, with GRSP content highest under G×S (5.68 and 6.27 mg·g−1, respectively) and lowest under CK (3.84 and 4.48 mg·g−1, respectively). EE-GRSP/soil organic carbon (SOC) and T-GRSP/SOC showed no significant difference (p > 0.05). The trends of colonization rate, spore density, and species abundance were the same and were significantly different from those of GRSP content (p < 0.05), with maximum values of 75.6%, 20.7 × 10 g−1, and 29.7, and minimum values of 55.6%, 13.0 × 10 g−1, and 12.7, respectively. Pearson correlation analysis showed that EE-GRSP was significantly positively correlated with SOC, total phosphorus, available phosphorus, and colonization rate (p < 0.05), and it showed an extremely significant positive correlation with available potassium, spore density, and species abundance (p < 0.01). T-GRSP was significantly positively correlated with total phosphorus and available phosphorus (p < 0.05), as well as with soil organic carbon, available potassium, spore density, colonization rate, and species abundance (p < 0.01). The redundancy analysis (RDA) showed similar results. Therefore, the distribution characteristics of GRSP and its influencing factors under different vegetation types in the low elevation area of Helan Mountain were influenced by vegetation types, physicochemical properties of rhizosphere soil, and arbuscular mycorrhizal fungi (AMF) colonization, thus providing a scientific basis for soil quality improvement and vegetation restoration.

Funder

the Key Project of Research and Development of Ningxia, China

National Natural Science Foundation of Ningxia, China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Reference44 articles.

1. The significance of Mycorrhiza;Harley;Mycol. Res.,1989

2. Smith, S.E., and Read, D.J. (2010). Mycorrhizal Symbiosis, Academic Press.

3. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi;Wright;Plant Soil,1998

4. The role of glomalin in mitigation of multiple soil degradation problems;Singh;Crit. Rev. Environ. Sci. Technol.,2022

5. Glomalin and its roles in soil ecosystem: A review;Gan;Soils Crops.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3